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Abstract in English

Existence of Solutions to a fourth order Neutral Di¤erential

Equation via the Krasnoselskii Fixed-Point Theorem

In this work, a fourth-order neutral functional di¤erential equation with

a time-varying delay is investigated. With the help of the Krasnoselskii �xed

point theorem as well as the Green�s functions method and some functional

analysis tools, we established some su¢ cient criteria that ensure the existence

of at least one positive periodic solution for the proposed equation.

Keywords. Existence, fourth order neutral di¤erential equation, Green�s

function, Krasnoselskii�s �xed point theorem, periodic solution.
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Abstract in French

Existence de Solutions d�une Equation Di¤érentielle

de type Neutre du quatrième ordre

via le théorème du point �xe de Krasnoselskii

Dans ce travail, une équation di¤érentielle fonctionnelle de type neutre

du quatrième ordre avec un retard variable en temps est étudiée. À l�aide du

théorème du point �xe de Krasnoselskii ainsi que de la méthode des fonctions

de Green et de certains outils de l�analyse fonctionnelle, nous avons établi

des critères su¢ sants qui garantissent l�existence d�au moins une solution

périodique positive pour l�équation proposée.

Mots-clés. Existence, équation di¤érentielle de type neutre de quatrième

ordre , fonction de Green, théorème de point �xe de Krasnoselskii, solution

périodique.
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C (Rn+1; (0;+1)) is the space of continuous functions from Rn+1 into (0;+1)
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General introduction

Functional di¤erential equations (FDEs) which are equations that con-

tain deviating arguments as functions and some of their derivatives

evaluated at di¤erent argument values, depend on the present as well as the

past or the future state of the system. For this, they are more used for mod-

elling real phenomena than ordinary di¤erential equations (ODE) since they

can be deemed as a fundamental pillar in describing speci�ed behaviors or

phenomena that depend on both the present and the past or the future state

of a system.

Fourth-order delay functional di¤erential equations are ubiquitous in var-

ious scienti�c disciplines. They arise in many real situations including vis-

coelastic and inelastic �ows [46, 49, 51], deformation of structures such as

aircraft, building and ships, vibrating motion in bridges [47, 50], soil settle-

ment [25] and electric circuits. The delay can stand for the time taken for

the observation to be available for use in control, delayed feedback control of

piezoelectric elastic beams, etc.
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General introduction

Problem statement

Delay di¤erential equations (DDEs) are generally not easy to handle,

especially those of higher-orders. Despite the fact that there are many

approaches which can be used for studying �rst-order DDEs, they often fail

to reach the desired results in investigating higher-order DDEs. This is par-

ticularly true for fourth order neutral functional di¤erential equations since

it is a pity that there are few published work in this direction.

In the current thesis, we deal with a fourth order neutral functional dif-

ferential equation (NDEs) with a time varying delay that can describe many

natural phenomena. This thesis is motivated by the desire to answer the

following fundamental research question:

What are the criteria for the existence of a at least one positive periodic

solution?

Objectives

The main goal of this thesis lies in highlighting the practicality of the

used technique that combines the �xed point theory and the Green�s

functions method, to deal with a higher-order neutral di¤erential equation.

It is precisely by means of this hybrid technique, that the current work princi-

pally probes into the existence of positive periodic solutions for a fourth-order

neutral di¤erential equation involving a time-varying delay.

Methodology

The methodology used herein is as follows: the existence of solutions

are proved by virtue of a hybrid technique that allows us to study the

existence of solutions of a higher-order DDEs easily which are unfortunately

2



General introduction

not always analyzed or solved easily. the technique employed here combines

the application of the Krasnoselskii �xed point theorem with the Green�s

functions method. The key steps of it lies in

Firstly, we de�ne an appropriate Banach space and a suitable subset of

it.

Secondly, we convert the equation at hand into an equivalent integral one

whose kernel is a Green�s function.

Thirdly, from the obtained integral equation, we construct an integral

operator that can be written as a sum of a contraction and a completely

continuous operator.

Finally, via the Krasnoselskii �xed point theorem of a sum of two map-

pings together with the help of Arzelá-Ascoli theorem and some properties

of the Green�s kernel, we succeed in establishing the existence of at least one

positive periodic solution.

Thesis overview

The organization of this manuscript is as follows. In Chapter 1, we

introduce certain de�nitions, concepts, and some preliminary results

that will be used to prove the main outcomes. in Chapter 2, we present a

quick overview on delay di¤erential equations. We then apply, in Chapter 3,

the Krasnoselskii �xed point theorem for showing the existence of at least

one positive periodic solution of the following fourth-order neutral di¤erential

equation:

d4

dt4
(x(t)� g (t; x(t� �(t)))) = �a (t)x(t) + f (t; x (t� � (t))) ;

where a; � 2 C (R; (0;1)), g 2 C (R� [0;1);R) and f 2 C (R� [0;1); [0;1))

are !-periodic functions in t. Finally, we draw the conclusion.

3



CHAPTER 1

Preliminary notions

Contents

1.1 Compact operators . . . . . . . . . . . . . . . . . 5

1.2 Fixed point theorem . . . . . . . . . . . . . . . . . 6

1.3 Banach�s �xed point theorem . . . . . . . . . . . 6

1.4 Krasnoselskii�s �xed point theorem . . . . . . . . 7

1.5 Arzelà-Ascoli theorem . . . . . . . . . . . . . . . 7

1.6 Periodic function . . . . . . . . . . . . . . . . . . . 8

1.7 Green�s function . . . . . . . . . . . . . . . . . . . 8

In this chapter, we present some notations, de�nitions and preliminaryresults that are used in the remainder of the thesis.
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Chapter 1. Preliminary notions

1.1 Compact operators

Let (X; k:kX) and (Y; k:kY) be two normed vector spaces over the same �eld

F.

De�nition 1.1 An operator S : X ! Y is said to be continuous at a point

x0 2 X if

lim
x!x0

Sx = Sx0

The continuity at x0 2 X could be characterized as follows:

8" > 0;9� > 0;8x 2 X; (kx� x0kX < �) =) (kSx� Sx0kY < ") :

If S is continuous at every point of X; then S is said to be continuous on X.

The continuity on X could be characterized as follows:

8" > 0;8x 2 X;9� > 0;8y 2 X; (kx� ykX < �) =) (kSx� SykY < ") :

De�nition 1.2 A map S : X ! Y is called Lipschitz continuous if there is

a positive constant C such that

8x; y 2 X : kSx� SykY � C kx� ykX :

If C 2 [0; 1[, S is called a contraction mapping.

Remark 1.1 If S : X! Y then

S is a contraction =) S is Lipschitz continuous =) S is continuous on X:

De�nition 1.3 A map S : X ! Y is said to be compact if and only if S

maps bounded sets into relatively compact sets, i.e.,

[S compact]()
h
8M � E; (M bounded) =) (S (M)) compact

i
:

5



Chapter 1. Preliminary notions

Equivalently, S is compact if and only if for every bounded sequence (xn)n2N

in X; the sequence (Sxn)n2N has a convergent subsequence in Y:

1.2 Fixed point theorem

De�nition 1.4 Let X be a vector space over F. A convex subset of X is

a subset M � X such that for every pair of points x; y 2 M and for every

� 2 [0; 1] we have that

�x+ (1� �) y 2M:

De�nition 1.5 Let (X; k:kX) be a normed vector space over F. A �xed point

of a mapping S : X ! X of X into itself is an x 2 X which is mapped onto

itself, that is

S (x) = x:

1.3 Banach�s �xed point theorem

One of the very helpful tools which is broadly applicable in proving the exis-

tence and uniqueness of solutions, is the well-known Banach �xed point theo-

rem (also known as the contraction mapping theorem or contractive mapping

theorem).

Theorem 1.1 Let (X; k:k) be a Banach space and let S : X ! X be a con-

traction on X: Then S has a unique �xed point x 2 X such that

S (x) = x:

Theorem 1.2 If M is a closed subset of a Banach space X and S :M!M

is a contraction, then S has a unique �xed point in M.

6



Chapter 1. Preliminary notions

1.4 Krasnoselskii�s �xed point theorem

Theorem 1.3 LetD be a closed convex nonempty subset of a Banach space(B; k:k).

Suppose that F2 and F2 map D into B such that

1. x; y 2 D , implies F1x+ F2y 2 D;

2. F1 is a contraction mapping,

3. F2 is completely continuous.

Then, there exists z 2 D with z = F1z + F2z:

1.5 Arzelà-Ascoli theorem

Let K be a compact subset of a normed vector space over F and let C(K;R)

be the normed vector space of real valued continuous functions on K with

the sup-norm

kfk = sup
x2X

jf (x)j :

Let F be a collection of functions in C(K;R).

De�nition 1.6 The collection F is said to be equicontinuous if for every

" > 0 there exists � > 0 so that for all f 2 F and x; y 2 X with kx� yk < �

we have jf(x)� f(y)j < "; i.e.,

8" > 0;8x 2 X; 9� > 0;8y 2 X; [kx� yk < �] =) [8f 2 F ; jf(x)� f(y)j < "] .

De�nition 1.7 The collection F is said to be uniformly bounded if there is

an M � 0 such that kfk = sup
x 2 X

jf (x)j �M for all f 2 F ; i.e.,

9M � 0 : kfk1 = sup
x 2 X

jf (x)j �M; 8f 2 F :

Theorem 1.4 If F is a collection of uniformly bounded and equicontinuous

functions in C(K;R), then F is relatively compact in C(K;R).

7



Chapter 1. Preliminary notions

1.6 Periodic function

Let f be a function de�ned on a set I, and let T be a non-zero real constant

.

De�nition 1.8 The function f is said to be T -periodic function if

f (t+ T ) = f (t) :

for all t 2 I:

Corollary 1.1 The derivative of a T -periodic function is also a T -periodic

function.

Remark 1.2 The antiderivative of a T -periodic function is not necessarily

a T -periodic function for t 2 R

1.7 Green�s function

The theory of Green�s functions is a valuable tool in the analysis of di¤erential

equations. Particularly, in solving nonhomogeneous boundary value problems

for linear ordinary di¤erential equations where the inverse of the di¤erential

operator is an integral operator whose kernel is a Green�s function.

De�nition 1.9 We will consider two �point nth�order linear boundary value

problems of the form

8<: Lny (t) = � (t) ; t 2 I � [c; d] ;

Ui (y) = "i; i = 1; :::;m:
(1.1)

8



Chapter 1. Preliminary notions

where

Lny (t) = a0 (t) y
(n) (t) + a1 (t) y

(n�1) (t) + :::+ an�1 (t) y
(1) (t) + an (t) y (t) ;

(1.2)

and

Ui(y) =
n�1X
j=1

�
�ijy

(j) (c) + �ijy
(j) (d)

�
; i = 1;m; m � n; (1.3)

where �ij; �
i
j and 
i real constants for all i = 1;m and j = 1; n� 1; � and ak

are continuous real functions for all k = 0; n; and a0 (t) 6= 0 for all t 2 I:

We say that G is a Green�s function for problem (1.1) if it satis�es the

following properties:

(G1) is de�ned on I � I:

(G2) For k = 0; n� 2; the partial derivatives @
kG

@tk
exist and they are

continuous on I � I:

(G3)
@k�1G

@tk�1
and

@kG

@tk
exist and they are continuous on the triangles

c � s < t � d and c � t < s � d:

(G4) For each t 2 (c; d) there exist the lateral limits

@n�1G

@tn�1
�
t; t+

�
and

@n�1G

@tn�1
�
t; t+

�
;

(i.e., the limits when (t; s)! (t; t) with s > t or with s < t) and, moreover

@n�1G

@tn�1
�
t; t+

�
� @n�1G

@tn�1
�
t; t+

�
= � 1

a0 (t)
:

(G5) For each s 2 (c; d) ; the function t! G (t; s) is a solution of the di¤er-

ential equation Lny = 0 on t 2 [c; s); and t 2 (s; d]: That is,

a0 (t)
@nG

@tn
(t; s)+a1 (t)

@n�1G

@tn�1
(t; s)+ :::+an�1 (t)

@G

@t
(t; s)+an (t)G(t; s) = 0;

on both intervals.

9



Chapter 1. Preliminary notions

(G6) For each s 2 (c; d) ; the function t ! G(t; s) satis�es the boundary

conditions

n � 1X
j=0

�
�ij
@jG

@tj
(c; s) + �ij

@jG

@tj
(d; s)

�
= 0; i = 1;m:

Theorem 1.5 Let us suppose that the homogeneous problem of problem (1.1)

has only the trivial solution. Then there exists a unique Green�s function,

G(t; s) associated to problem (1.1). Moreover, the unique solution is given

by the expression

y ((t)) =

Z d

c

G(t; s)� (s) ds:

10
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The aim of this chapter is to provide the necessary background for un-

derstanding the notion of delay di¤erential equations.
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Chapter 2. Delay functional di¤erential equations

2.1 Introduction

Delay di¤erential equations (DDEs) are a class of di¤erential equations

that involve delays or memory e¤ects in their formulations. Something

like

x(m) (t) = f
�
t; x(m1) (t� � 1) ; :::; x

(mk) (t� � k)
�
;

where � i; i = 1; k are the delays and f is a given function. The presence

of the terms x (t� � i) indicates that the state x (t) at time t depends on

its state at some previous times t � � i; where i = 1; k: Such equations have

been widely used in modeling physical and biological phenomena that exhibit

time delays in their dynamics. For instance, they are commonly used to

model the dynamics of populations with time delays in their reproduction

and the spread of infectious diseases with incubation periods. The meaning

of the memory or the time-delay di¤ers from one model to another. For

instance, it can be related to the incubation period of an infectious disease

in epidemiology, the time between initiation of cellular production in the

bone marrow and release of mature cells into the blood in the production

of blood cells in hematology, the transit time or the duration of a cellular

transformation in the dynamics of cell populations, the time of gestation,

development, the juvenile phase, life cycle or the period of maturation in

population dynamics of certain human, animal and plant species, a time

lag that often arises in feedback loops involving sensors and actuators in

engineering and also an information lag in economic dynamics, to name a

few.

12



Chapter 2. Delay functional di¤erential equations

2.2 A Brief History

The �rst reference about a delay di¤erential equation goes back to the XVIIIth

century and is due to J. Bernoulli (1728). As the (Latin) title of the paper

shows, he considered a weighted stretched vibrating cord with distributed

masses on it. He �nally led to

y0 = y (t� 1) ;

but he ignored it since he thought that there were several mistakes in deduc-

ing the equation.

In 1908, during the international conference of mathematicians, Picard

emphasized the signi�cance of accounting for hereditary e¤ects when con-

structing models of physical systems with the following statement:

"Nous pouvons rêver d�équations fonctionnelles plus compliquées que les

équations classiques parce qu�elles renfermeront en outre des intégrales prises

entre un temps passé très éloigné et le temps actuel, qui apporteront la part

de l�hérédité".

Since then, equations of this kind have drawn a lot of attention from

scienti�c researchers which led to publish a great amount of works especially

in the �fties that saw an explosion of scienti�c activities in this direction. To

be honest, the thirties of the last century have paved the way to this explosion

of research and pushed forward the frontiers of knowledge to improve or to

increase the number of publications on this topic. For example, the works

and the interesting obtained results of Volterra who wrote in his works on

the role of hereditary e¤ects on models for the interaction of species, have

contributed in developing both the theoretical ecology and the theory of delay

di¤erential equations and their applications.

During the �fties, there have been a sustained attention by scholars as well

13



Chapter 2. Delay functional di¤erential equations

as a lot of activities and developments in this direction that led to a collection

of publications done by Myshkis (1951), Krasovskii (1959), Bellman, Cooke

(1963), and Halanay (1966) in which these scholars have gave a clear picture

of the topic.

They have witnessed massive movement in recent years. It now occupies

a prime position in all �elds of engineering and science due to their wide-

spread applications in many branches of science, such as life sciences, physical

sciences, economical sciences and engineering.

2.3 Classi�cation

Functional di¤erential equations with delays can be classi�ed as linear or

nonlinear, autonomous or non-autonomous, etc. Here, we are interested in

giving a classi�cation of them according to the most known types of delays

cited in the literature where we distinguish two main classes, the �rst is called

"delay di¤erential equations" and the other "delay di¤erential equations of

neutral type".

The delay � can be constant, we call such equation, a DDE with a discrete

or constant delay.

If � i depends on the time,� = � i (t), we are talking about a DDE with a

time-dependent or time varying delay.

If � i depends on the state,� = � (x (t)) ; we are talking about a DDE with

a state-dependent delay.

If � i appears in the highest derivative of the equation, we are talking

about a DDE of neutral type.

There are other types of DDEs such DDEs with distributed delays.

14



Chapter 2. Delay functional di¤erential equations

Classi�cation of functional di¤erential equations

It is worth noting here that ordinary di¤erential equation can be regarded

as a special case and a starting point of delay di¤erential equation. The

substantial di¤erences between the two can be summarized as follows:

Delay Di¤erential Equations Ordinary Di¤erential Equations

Supposed to take into account

the history of the past due to the

in�uence of the changes on the

system is not instantaneous (Hale,1993)

Supposed to take into account the

principle of causality due to the

in�uence of the changes on the

system is instantaneous (Hale,1993)

Depends on initial function to

de�ne a unique solution

Depends on initial value to de�ne

a unique solution

Give a system that is in�nite

dimensional

Give a system that is �nite

dimensional

Analytical theory is well less developed
Analytical theory is well developed

(Lumb,2004)
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2.4 Existence and uniqueness results

In this section, we present some classic results on existence and uniqueness

of solutions.

2.4.1 Delay di¤erential equations

Given a number � � 0, C([a; b];Rn); the Banach space of continuous functions

de�ned on [a; b] with values in Rn is provided with the norm of uniform

convergence. If [a; b] = [�� ; 0], we put C = C([�� ; 0];Rn) and we denote the

norm of an element � 2 C by

k'k = sup
���t�0

j' (t)j :

If t0 2 R; A � 0 and x 2 C ([t0 � � ; t0 + A] ;Rn), then for t 2 [t0; t0 + A]; we

de�ne xt 2 C by

xt(s) = x(t+ s);

for all s 2 [�� ; 0].

De�nition 2.1 [29] If D is a subset of R � C, f : D �! Rn is a given

function and here represents the derivative on the right, the equation

�
x(t) := f(t; xt); (2.1)

where

xt(s) := x(t+ s); s 2 [�� ; 0]; (2.2)

is a delay functional di¤erential equation on D denoted and the number � is

called the delay.

16
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It is clear that the case � = 0 corresponds to the case of ordinary di¤eren-

tial equations. It is obvious that an initial condition appropriate to the time

t = t0 requires the determination of the function x over the entire interval

[t0 � � ; t0]:

x(t) =  (t); t 2 [t0 � � ; t0]; (2.3)

where  : [t0 � � ; t0] �! Rn is a given function assumed to be continuous

called the initial condition of the delay equation (2.1) Thus, the equation

(2.1) can be written in the form8<: x0(t) := f(t; xt); t � t0

x(t) =  (t); t 2 [t0 � � ; t0];
(2.4)

where is  a given continuous function on the interval [t0 � � ; t0]:

De�nition 2.2 [29] Given  2 C and t0 2 R, a solution of the equation

(2.1) is a function denoted x(t) such that x(t) =  (t) if t 2 [t0 � � ; t0] and

satisfying (2.1) if t 2 [t0; t0 + A] with A > 0. Such a function x(t) is called

the solution of (2.1) through (t0;  )and it is often denoted by

x(t) = x (t0;  ; f) : (2.5)

Lemma 2.1 [29]Let  2 C; t0 2 R and f (t;  ) a continuous function. Find-

ing solutions of the equation (2.1) though (t0;  ) is equivalent to solving8<: xt0 =  ;

x(t) =  (0) +
R t
t0
f(u; xu)du; t � t0:

Theorem 2.1 (Existence) [29] For equation (2.1), suppose that 
 is an open

subset of R�C and f 2 C(
;Rn) is a continuous mapping on 
: if (t0;  ) 2 
,

then there exists a solution of the equation (2.1) passing through (t0;  ) :

17
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De�nition 2.3 [29] The function f(t; ') is said to be a Lipschitz mapping

with respect to ' on a compact K of R� C if there is a constant k > 0 such

that for all (t;  i) 2 K; i = 1; 2 ; one has

jf(t;  1)� f(t;  2)j � k j 1 �  2j : (2.6)

Theorem 2.2 [29] Suppose that 
 is an open subset of R�C, f : 
 �! Rn

is continuous and f(t;  ) is a Lipschitz mapping with respect to  on any

compact subset 
. If (t0;  ) 2 
, then there is a unique solution of the

equation (2.1) passing through (t0;  ).

2.4.2 Neutral di¤erential equation

De�nition 2.4 [30] Suppose that 
 is an open subset of R� C of elements

(t;  ). A function D : 
 ! Rn is said to be atomic at a point � of 
: if D;

its �rst and second derivatives are continuous in the sense of Fréchet with

respect to  and D ; is atomic in � of 
:

De�nition 2.5 [30] Suppose that 
 is an open subset of R�C, D : 
! Rn

and f : 
! Rn are two given continuous functions with D is atomic in zero

.The relation
d

dt
D(t; xt) = f(t; xt); (2.7)

is said to be a di¤erential equation of neutral type.

Theorem 2.3 [30] (Existence) If 
 is an open subset of R�C and (t0;  ) 2


; then there is a solution of the equation (2.7) passing through (t0;  ) :

18
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Theorem 2.4 [30] (Existence and uniqueness) if 
 is an open subset of

R� C and f (t;  ) is a Lipschitz mapping with respect to  on any compact

subset of 
; so for all (t0;  ) 2 
; there is a unique solution for the equation

(2.7) passing through (t0;  ) :

2.5 Solving delay di¤erential equations

Delay di¤erential equations can be solved by using many methods depending

on the form of the equation itself and its complexity when dealing with it. For

instance, we can use the step method, the Runge-Kutta method, the Laplace

method, or by using a Software such as Matlab, Maple, Mathematica,...

2.5.1 Step method

The step method (also known as "step by step method", "step method"

or "successive integration method") makes it possible to numerically solve

DDEs and NDEs and at the same time makes it possible to establish the

existence and uniqueness of the solution. It was presented in 1965, by R.

Bellman for constant delays. Others like El�sgol�ts and Norkin (1973) have

shown that it also remains valid for variable delays, provided that the delay

never vanishes. To �x the ideas, we consider a particular case of the following

"Frisch-Holme" delay linear functional di¤erential equation:8<: x0 (t) = a1x (t) + a2x (t� �) for all t 2 [0; � ]

x (t) = ' (t) for all t 2 [�� ; 0] ;
(2.8)

where a1 and a2 are two real constants.

19



Chapter 2. Delay functional di¤erential equations

Example 2.1 Consider the following equation of the Frisch-Holme type:8<:
dx

dt
= �x(t� �); For t 2 [0; 2� ]

x(t) = ' (t) = 1 �� � t � 0:
(2.9)

1st step: In the interval [�� ; 0]

x (t) = 1:

2st step: In the interval [0; � ]

The integration of the two sides of the DDE from 0 to t, gives

x (t) = �

Z t

0

x(s� �)ds+ x (0) : (2.10)

Since 0 � s < �; so �� � s� � < 0: Since x(t) = 1 For t 2 [�� ; 0[, then

x(s� �) = 1;

for s 2 [0; � ], which leads to

x (t) = �t+ 1;

in the interval [0; � ].

3st step: In the interval [� ; 2� ]

The integration of the two sides from � to t, gives

x (t) = �

Z t

�

x(s� �)ds+ x (�) :

Since � � s < 2� , then 0 � s� � < � . Since x(t) = �t+1 for t 2 [0; � [, then

x(s� �) = �(s� �) + 1;

for s 2 [� ; 2� ], which leads to

x (t) = �2
t2

2
+
�
�� �2�

�
t� �2

� 2

2
+ �2� 2 � ��;
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in the interval [� ; 2� ].

Finally, we obtained

t ODE with initial condition

[0; � ]

8<: x0 (t) = �

x (0) = 1

[� ; 2� ]

8<: x0 (t) = �2(t� �) + �

x (�) = �� + 1;

and the solution is given by

x(t) =

8<: �t+ 1 0 � t � �

�2
t2

2
+ (�� �2�) t� �2

� 2

2
+ �2� 2 � �� � � t � 2� :

(2.11)

If we take � = �1, � = 1 with the same initial condition ' (t) = 1, we will

have

x(t) =

8<: 1� t 0 � t � 1
t2

2
� 2t+ 3

2
1 � t � 2:
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CHAPTER 3

Existence results for a fourth-order neutral delay

di¤erential equation
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that guarantee the existence of positive periodic solutions of a class of fourth

order nonlinear neutral di¤erential equations.
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3.1 Introduction

Fourth-order delay di¤erential equations with periodic coe¢ cients have taken

great interest by many scholars due to their crucial role in providing a more

accurate and realistic description of many real phenomena in di¤erent �elds,

ranging from life sciences to physics, technology, and engineering. For in-

stance, they appear in viscoelastic and inelastic �ows [46, 49, 51], deforma-

tion of structures [47, 50], soil settlement [25] and electric circuits. A lot of

attention has been paid to this topic. We cite as recent contributions the

following papers:

By virtue of the Krasnoselskii �xed point theorem, Yan Sun and Cun Zhu

[67] proved the existence of positive solutions of the following fourth-order

three point boundary value problem:

y(4) (t) + f (t; y (t)) = 0; t 2 [0; 1] ;

y (0) = y0 (0) = y00 (0) = 0; y00 (1)� �y00 (�) = �;

where � 2 (0; 1), � 2
�
0;
1

�

�
and the parameter � 2 [0;1) :

Ertürk [26] investigated the following fourth-order three-point boundary

value problem:

y(4) (t) + g (t; y) = 0; t 2 [c; d] ;

y (c) = y0 (c) = y00 (c) = 0; y (d) = �y (�) ; � 2 [c; d] ; � 2 R:

He used the Banach �xed point theorem to establish the existence and

uniqueness results.

In [2], Balamuralitharan employed the coincidence degree continuation

theorem for studying the existence of positive periodic solutions for the fol-

lowing fourth-order di¤erential equation with time-varying delay:

x(4) (t)+ax(3) (t)+�f (x00 (t� � (t)))+�g (x0 (t� � (t)))+h (x (t� � (t))) = �p (t) :
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Tunç [68] used the Liapunov functional approach to study the asymptotic

stability of zero solution of the following class of fourth-order non-linear dif-

ferential equations with constant delay:

x(4) (t) +' (x00 (t))x(3) (t) + h (x0 (t))x00 (t) + � (x0 (t� r)) + f (x (t� r)) = 0:

By means of Krasnoselskii�s �xed point theorem, the authors of [48] estab-

lished the existence of positive periodic solutions for the following class of

fourth-order nonlinear neutral equations:

d4

dt4
(x (t)� c (t)x (t� � (t))) = a (t)x (t)� f (t; x (t� � (t))) :

In this chapter, we consider the following fourth-order nonlinear neutral dif-

ferential equation:

d4

dt4
(x(t)� g (t; x(t� �(t)))) = �a (t)x(t) + f (t; x (t� � (t))) ; (3.1)

where a; � 2 C (R; (0;1)), g 2 C (R� [0;1);R), f 2 C (R� [0;1); [0;1)),

a; � ; g (t; x) ; f (t; x) are ! periodic in t; ! is a positive constant and the

function g (t; x) is Lipschitz continuous in x. That is to say, there exists a

positive constant k such that

kg (t; x)� g (t; y)k � k kx� yk ;8t 2 [0; !] ; x; y 2 P!: (3.2)

For a �xed ! > 0, we consider the space

P! = fx 2 C (R;R) : x (t+ !) = x (t)g ;

of continuous and !�periodic functions with the supremum norm

kxk = sup
t2R

jx(t)j = sup
t2[0;w]

jx(t)j ; (3.3)

is a Banach space. Moreover, for some positive constants L1; L2 > 0 we

de�ne the set
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D = f' 2 P! : L1 � ' � L2g ; (3.4)

which is bounded and convex subset of P!:

We put

P+! := fx 2 P! : x > 0g ; m := inf
t2[0;w]

a (t) ;

M := sup
t2[0;w]

a (t) ; � := 4
p
M:

(3.5)

3.2 Green function

Lemma 3.1 The equation

d4

dt4
x(t) +Mx(t) = h(t); h(t) 2 P+! ; (3.6)

has a unique !-periodic solution

x(t) =

Z t+!

t

G (t; s)h(s)ds; (3.7)

where

G (t; s) =
1

4
3

�
A
�
sinh

�
s� t� !

2

�
sin 


�
s� t� !

2

���
+B

�
cosh 


�
s� t� !

2

�
cos 


�
s� t� !

2

��
; (3.8)

for all s 2 [t; t+ !] :

A :=
sin
�


!

2

�
cosh

�


!

2

�
� cos

�


!

2

�
sinh

�


!

2

�
cosh 
! � cos 
! ; (3.9)

and

B :=
cos
�


!

2

�
sinh

�


!

2

�
� sin

�


!

2

�
cosh

�


!

2

�
cosh 
! � cos 
! : (3.10)
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Proof. The associated homogeneous equation of equation (3.6) is

d4

dt4
x(t) +Mx(t) = 0;

where its characteristic equation is

�4 +M = 0;

and the roots of this last characteristic equation are

�1 = 
 (1 + i) ; �2 = 
 (�1 + i) ; �3 = 
 (�1� i) ; �4 = 
 (1� i) ;

where


 =

p
2

2
�:

So, the solution of the homogeneous equation is

x(t) = C1 exp

(1+i)t+C2 exp


(�1+i)t+C3 exp

(�1+i)t+C4 exp


(1+i)t :

We use the method of variation of parameters, to arrive at

C 01 (t) = �h(t)
exp�t
(1+i)

8 (1� i) 
3
;

C 02 (t) = h(t)
expt
(1�i)

8 (1 + i) 
3
;

C 03 (t) = h(t)
expt
(1+i)

8 (1� i) 
3
;

C 04 (t) = �h(t)
exp�t
(1�i)

8 (1 + i) 
3
:

(3.11)

Since x(t); x0(t); x00(t); and x000(t) are periodic functions, we obtain

C1(t) = tt+! �
R t+w
t

exp
(1+i)(!+s)

8 (1� i) 
3 [1� exp
(1+i)!]h(s)ds;

C2(t) = tt+! �
R t+w
t

exp
(1�i)s

8 (1 + i) 
3 [1� exp
(1�i)!]h(s)ds;

C3(t) = tt+! �
R t+w
t

exp
(1+i)s

8 (1� i) 
3 [1� exp
(1+i)!]h(s)ds;

C4(t) = tt+! �
R t+w
t

exp
(1�i)(!�s)

8 (1 + i) 
3 [1� exp
(1�i)!]h(s)ds:

(3.12)

26



Chapter 3. Existence results for a fourth-order neutral delay di¤erential
equation

Hence,

x(t) = C1(t) exp

(1+i)t+C2(t) exp


(�1+i)t+C3 exp

(�1�i)t+C4 exp


(1�i)t

=

Z t+!

t

G (t; s)h (s) ds;

where G (t; s) is identi�ed by (3.8).

Lemma 3.2 Function G (t; s) satis�esZ t+!

t

G (t; s)h (s) ds =
1

M
;

and if

maxfa(t) : t 2 [0; !]g < 4
��
!

�4
; (3.13)

then

0 < �1 < G (t; s) < �2; 8t 2 [0; !] ; s 2 [t; t+ !] ;

where

�1 =
1

4
3

cos(
!
2
) sinh(
!)

2
) + sin(
!

2
)� cosh(
!

2
)

cosh(
!)� cos (
!) ;

and

�2 =
1

4
3
cos(
!

2
) sinh(
!)

2
) + sin(
!

2
)� cosh(
!

2
)

cosh(
!
2
)� cos

�

!
2

� :
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Proof. We haveZ t+!

t

G (t; s) ds =
1

4
4

�Z t+!

t

A
�
sinh 


�
s� t� !

2

�
sin 


�
s� t� !

2

���
+
1

4
4

�Z t+!

t

B
�
cosh 


�
s� t� !

2

�
cos 


�
s� t� !

2

��
ds

�
=

A

16
4
exp
(s�t�

!
2 )
h
(exp
(s�t�

!
2 )+1 cos 


�
s� t� !

2

�
+
�
exp
(2s�2t+!)+1

�
sin 


�
s� t� !

2

�i���t+w
t

+
B

16
4
exp
(s�t�

!
2 )
h
(exp
(2s�2t�

!
2 ) +1) sin 


�
s� t� !

2

�
� (exp
(s�t�

!
2 )+1 cos 


�
s� t� !

2

�i���t+w
t

=
1

4
4

"
2
(cosh(
!

2
) sin(
!)

2
))2 + (sinh(
!

2
)� cos(
!

2
))2

cosh 
! � cos 
!

#

=
1

4
4

�
2
(1=2) cosh 
! � (1=2) cos 
!

cosh 
! � cos 
!

�
=

1

4
4
=
1

�4
=
1

M
:

Since �
d

ds

�
G (t; s) = 0;

if and only if s = t+
!

2
, then

G (t; t) = G (t; t+ !)

=
1

4
3
cos(
!

2
) sinh(
!)

2
) + sin(
!

2
)� cosh(
!

2
)

cosh(
!
2
)� cos

�

!
2

�
= �2;

and

G
�
t; t+

!

2

�
=

1

4
3

cos(
!
2
) sinh(
!)

2
) + sin(
!

2
)� cosh(
!

2
)

cosh(
!)� cos (
!)
= �1:

Since

maxfa(t) : t 2 [0; !]g < 4
��
!

�4
;
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we get

0 <

!

2
<
�

2
: (3.14)

So,

sin

!

2
> 0; 1 > cos


!

2
> 0; sinh


!

2
> 0: (3.15)

Consequently

0 < �1 < G (t; s) < �2; 8t 2 [0; !] ; s 2 [t; t+ !] :

This completes the proof.

3.3 Conversion of equation (3.1) into an in-

tegral equation

Lemma 3.3 If f (t; x) > 0, and

max fa (t) : t 2 [0; !]g < 4
��
!

�4
; (3.16)

then x 2 P! is a solution of equation (3.1) if and only if

x(t) = g (t; x (t� � (t))) +

Z t+!

t

G (t; s) [(M � a (s))x(s)

+f (s; x (s� � (s)))�Mg (t; x (s� � (s)))] ds: (3.17)

Proof. Let x 2 P! be a solution of equation (3.1). We rewrite equation

(3.1) as follows:

d4

dt4
(x(t)� g(t; x(t� �(t)))) +M (x (t)� g (t; x (t� � (t))))

= �a (t)x(t) + f (t; x (t� � (t))) +M (x (t)� g (t; x (t� � (t))))

= (M � a (t))x (t) + f (t; x (t� � (t)))�Mg (t; x (t� � (t))) : (3.18)
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According to Lemma 3.1, we obtain

x(t)� g(t; x(t� �(t)))

=

Z t+!

t

G (t; s) ((M � a (s))x(s) + f (s; x (s� � (s)))) ds

�
Z t+!

t

G (t; s) (Mg (t; x (s� � (s)))) ds ;

which implies that

x(t) = g (t; x (t� � (t))) +

Z t+!

t

G (t; s) [(M � a (s))x(s)

+f (s; x (s� � (s)))�Mg (t; x (s� � (s)))] ds:

This completes the proof.

3.4 Existence of positive periodic solutions

In order to prove the existence of positive periodic solutions, we will use

the Krasnoselskii �xed point theorem with help of some properties of the

obtained Green�s function. Let us de�ne the two operators F1;F2 : P! ! P!

as follows:

F1 (') (t) := g (t; ' (t� � (t))) ; (3.19)

and

F2 (') (t) : = '(t) =

Z t+!

t

G (t; s) [(M � a (s))'(s) + f (s; ' (s� � (s)))

�Mg (t; ' (s� � (s)))] ds: (3.20)

So, equation (3.16) can be written as follows:

' (t) = (F1') (t) + (F2') (t) : (3.21)
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Therefore, any solution of equation (3.21) is a solution of equation (3.1) and

vice versa.

Lemma 3.4 If

k < 1; (3.22)

then, F1 is a contraction.

Proof. It is evident that

(F1') + (t+ !) = (F1') (t) : (3.23)

Now, for all ',  2 P!, we have

j(F1') (t)� (F1 ) (t)j = jg (t; ' (t� � (t)))� g (t;  (t� � (t)))j

� sup
t2[0;!]

jg (t; ' (t� � (t)))� g (t;  (t� � (t)))j

� k k'�  k :

Thus,

k(F1') (t)� (F1 ) (t)k � k k'�  k : (3.24)

Consequently, it follows from (3.22) that F1 : P! ! P! is a contraction.

Lemma 3.5 If

M < 4 (�=!)4 ;

and

0 < f (t; x) � C:

Then, F2 is completely continuous.

Proof. The proof will be made in three steps.
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Step 1. We show that F2 is continuous. Let fyng be a sequence of P!
such that yn ! y in P!. We have

jF2 (yn) (t)�F2 (y) (t)j �
Z t+!

t

G (t; s) ((M � a (s))) jyn (s)� y (s)j

+ jf (s; yn (s� � (s)))� f (s; y (s� � (s)))j

+M jg (t; yn (s� � (s))) +Mg (t; y (s� � (s)))j ds:

It follows from the continuity of f and g that

kF2 (yn)�F2 (y)k ! 0 as n!1: (3.25)

Thus,F2 is continuous.

Step 2. We prove that F2 maps bounded sets into bounded sets in

(P!; k:k). If r > 0; let

Br = fx 2 P!; kxk < rg

be a bounded ball in (P!; k:k).

For x 2 Br we have

jF2 (x) (t)j =
����Z t+!

t

G (t; s) ((M � a (s))x (s) + f (s; x (s� � (s))))

�Mg (t; x (s� � (s)))j ds

�
Z t+!

t

G (t; s) ((M � a (s))x (s) + f (s; x (s� � (s))))

�Mg (t; x (s� � (s)))j ds: (3.26)

From Lemma 3.2 and the fact that f (t; x) � C, we get

jF2 (x) (t)j � �2

Z t+!

t

(M �m) r + f (s; x (s� � (s)))�Mg (t; yn (s� � (s))) ds

� �2! ((M �m) r + C) :

The estimation of kF2 (x)k implies

kF2 (x)k � �2! ((M �m) r + C) :
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This shows that F2 is bounded.

Step 3. We prove that F2 sends bounded sets into equicontinuous sets.

Let t1; t2 2 [0; !], t1 < t2, and Br be a bounded set of P!. For all i 2 f1; 2g

, we have

jF2 (x) (ti)j =
Z t+!

t

G (ti; s) ((M � a (s))x (s) + f (s; x (s� � (s)))

�Mg (t; x (s� � (s))))) ds:

We set

F3 = jF2 (x) (t2)�F2 (x) (t1)j :

So, we obtain

F3 =

����Z t2+!

t2

G (t2; s) ((M � a (s))x (s) + f (s; x (s� � (s))))

�Mg (t2; x (s� � (s))))ds

�
Z t1+!

t1

G (t1; s) ((M � a (s))x (s) + f (s; x (s� � (s))))

�Mg (t1; x (s� � (s))))j ds

=

����Z t1+!

t2

G (t2; s) ((M � a (s))x (s) + f (s; x (s� � (s))))

�Mg (t2; x (s� � (s))))ds

+

Z t2+!

t1+!

G (t2; s) ((M � a (s))x (s) + f (s; x (s� � (s))))

�Mg (t2; x (s� � (s))))ds

�
Z t2

t1

G (t1; s) ((M � a (s))x (s) + f (s; x (s� � (s))))

�Mg (t1; x (s� � (s))))ds

�
Z t1+!

t2

G (t1; s) ((M � a (s))x (s) + f (s; x (s� � (s))))

�Mg (t1; x (s� � (s))))dsj :
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Which implies that

F3 �
����Z t1+!

t2

G (t2; s) ((M � a (s))x (s) + f (s; x (s� � (s)))) ds

+

Z t2+!

t1+!

G (t2; s) ((M � a (s))x (s) + f (s; x (s� � (s)))) ds

�
Z t2

t1

G (t1; s) ((M � a (s))x (s) + f (s; x (s� � (s)))) ds

�
Z t1+!

t2

G (t1; s) ((M � a (s))x (s) + f (s; x (s� � (s)))) ds

�
Z t1+!

t2

((M � a (s))x (s) + f (s; x (s� � (s)))) jG (t2; s)�G (t1; s)j ds

+

Z t2+!

t1+!

jG (t2; s)j ((M � a (s))x (s) + f (s; x (s� � (s)))) ds

+

Z t2

t1

jG (t1; s)j ((M � a (s))x (s) + f (s; x (s� � (s)))) ds

� (M �m) r

�Z t1+!

t2

j(G (t2; s)�G (t1; s))j ds

+

Z t2+!

t1+!

jG (t2; s)j ds+
Z t2

t1

jG (t1; s)j ds
�
:

As t2 ! t1, the right-hand side of the above inequality tends to zero. By

the Arzela-Ascoli theorem, we conclude that F2 is a completely continuous

operator. This completes the proof.

Now, we will prove the existence of positive periodic solutions to equation

(3.1) by using the Krasnoselskii �xed-point theorem.

The case where g (t; x) < 0

We assume that there exist nonpositive constants K1and K2 such that

K1 < g (t; x) < K2; 8t 2 [0; !] ; x 2 D: (3.27)
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Theorem 3.1 Assume that

M < 4 (�=!)4 ;

and the function f satis�es

L1 �K1

�1!
� f (t; x (t� � (t))) � L2

�2!
� (M �m)L2 +MK1: (3.28)

Then, equation (3.1) has a positive !-periodic solution x in the subset D.

Proof. Let us start by proving that

F1 (') + F2 (�) 2 D; 8'; � 2 D: (3.29)

In fact,

F1 (') + F2 (�) = g (t; ' (t� � (t))) +

Z t+!

t

G (t; s) ((M � a (s))� (s) + f (s; � (s� � (s))))

�Mg (t; � (s� � (s))))ds

� �2! ((M �m)L2 +MK1) + �2

Z t+!

t

f (s; � (s� � (s))) ds

� �2! ((M �m)L2 �MK1) + �2!

�
L2
�2!

� (M �m)L2 +MK1

�
= L2:

On the other hand,

F1 (') + F2 (�) = g (t; ' (t� � (t))) +

Z t+!

t

G (t; s) ((M � a (s))� (s) + f (s; � (s� � (s))))

�Mg (t; � (s� � (s))))ds

� K1 + �1!

Z t+!

t

f (s; � (s� � (s))) ds

� K1 + �1!

�
L1 �K1

�1!

�
= L1;

which leads to

F1 (') + F2 (�) 2 D; 8'; � 2 D:

From Lemma 3.4, F1 is a contraction. Also, from Lemma 3.5, the operator

F2 is completely continuous. Then the Krasnoselskii �xed-point theorem
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ensures that F1 + F2 has at least a �xed point ' 2 D which is a solution to

equation (3.21), so equation (3.1) has at least a positive ! -periodic solution

x in the subset D.

The case where g (t; x) = 0

Theorem 3.2 Assume that

M < 4 (�=!)4 ;

and

L2
�1!

� f (s; x (s� � (s))) � L1
�1!

� (M �m)L1; 8t 2 [0; !] ; x 2 D: (3.30)

Then, equation (3.1) has a positive ! -periodic solution x in the subset D.

Proof. We have F1 = 0. Similarly to the proof of Theorem 3.1, we show that

equation (3.1) has a positive !-periodic solution x 2 D. Since F (t; x) > 0 ,

it is easy to see that x (t) > 0; i.e., equation (3.1) has a positive !-periodic

solution x 2 D.

The case where g (t; x) > 0

We assume that there exist nonnegative constants K3 and K4 such that

K3 � g (t; x) � K4; 8t 2 [0:!] ; x 2 D: (3.31)

Theorem 3.3 Assume that

M < 4 (�=!)4 ;

and the function f satis�es

L1 �K1

�1!
� f (t; x (t� � (t))) � L2 �K4

�2!
� (M �m)L2 +MK3: (3.32)

Then, equation (3.1) has a positive -periodic ! solution x in the subset D.
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Proof. According to Lemma 3.5, it follows that the operator F1 is a contrac-

tion, and from Lemma 3.5, the operator F2 is completely continuous. Now,

we prove that

F1 (') + F2 (�) 2 D; 8'; � 2 D:

We have

F1 (') + F2 (�) = g (t; ' (t� � (t)))

+

Z t+!

t

G (t; s) ((M � a (s))� (s) + f (s; � (s� � (s))))

�Mg (t; � (s� � (s))) ds

� K4 + �2! ((M �m)L2 +MK3)

+�2

Z t+!

t

f (s; ' (s� � (s))) ds

� K4 + �2! ((M �m)L2 �MK3)

+�2!

�
L2 �K4

�2!
� (M �m)L2 +MK3

�
= L2:

Also,

F1 (') + F2 (�) = g (t; ' (t� � (t)))

+

Z t+!

t

G (t; s) ((M � a (s))� (s) + f (s; � (s� � (s))))

�Mg (t; � (s� � (s))) ds

� K3 + �1!

Z t+!

t

f (s; ' (s� � (s))) ds

� K3 + �1!

�
L1 �K3

�1!

�
= L1:

Thus,

F1 (') + F2 (�) 2 D; 8'; � 2 D:

By the Krasnoselskii theorem, we deduce that F = F1 + F2 has a �xed

point which is a solution to equation (3.1), so equation (3.1) has a positive

! -periodic solution x in the subset D.
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Conclusion

Fourth-order neutral di¤erential equations play crucial roles in every

facet of real life since they are a powerful tool that can be used ef-

fectively for modelling a growing number of natural phenomena accurately.

Via a hybrid technique that combines the �xed point theory with the

Green�s functions method, we have obtained the existence results. More pre-

cisely, we have followed three main steps: �rst of all, we have de�ned an

appropriate Banach space and a suitable subset of it to apply the Krasnosel-

skii �xed point theorem and to satisfy some mathematical requirements; we

have next converted the problem at hand into an integral equation whose

kernel is a Green�s function and �nally, by employing the Krasnoselskii �xed

point theorem with the help of Arzelá-Ascoli theorem and some properties

of the obtained kernel, we have proved the existence of at least one positive

periodic solution.
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