Fatima Zohra, GADOUCHEAbdenour, KABIR2024-07-112024-07-112024-03-10http://dspace.univ-skikda.dz:4000/handle/123456789/2215The effect of the substitution of barium by calcium and tin by lead on structural, optical and luminescence properties of spray deposited barium tin oxide films onto glass substrates was studied in this work, as a function of the calcium-based solution volume ratio RCa and leadbased solution volume ratio RPb. The structural, optical and photoluminescence properties of deposited barium-calcium tin oxide films were characterized by x-ray diffraction (XRD), UVvisible spectroscopy and photoluminescence spectroscopy (PL), respectively. Measurement of the films thickness has been also done. All experiments were done at a substrate temperature of 500°C. According to x-ray diffraction (XRD) patterns, the substitution of barium by calcium induced an indirect phase transition from Ba3SnO to Ca3SnO which is the same result for the substitution of tin by lead during the transition to Ba3PbO. Metastable phases were identified for both series of samples. As a function of RCa, the mean transmittance, in the visible domain, increased from 50 to 80% while the band gap energy decreased from 3.14 to 3.09 eV. PL spectra revealed that the substitution of barium by calcium and the substitution of tin by lead increased the concentration of double ionized oxygen vacancies (VO++). The semiconducting behavior and the presence of defects made the deposited films promising materials for optoelectronics, gas sensing and photovoltaic conversion devices.enElaboration and characterization, of Ba-Sn-O system, by chemicalmethod: Application in photovoltaic.Thesis