Positive Periodic Solutions for an Iterative Model of Erythropoiesis in Animals

dc.contributor.authorNadine ,BENYOUCEF
dc.contributor.authorAhlème. ,BOUAKKAZ
dc.date.accessioned2025-11-25T08:52:44Z
dc.date.available2025-11-25T08:52:44Z
dc.date.issued2025
dc.description.abstractThe primary aim of this work is to study the existence, uniqueness, and continuous dependence on parameters of positive periodic solutions for a rst-order delay di¤erential equation with an iterative term, describing the dynamics of red blood cell populations in animals. Using the Krasnoselskii xed point theorem combined with the Green s functions method, we prove the existence of at least one positive periodic solution for the given equation. Furthermore, by virtue of the Banach xed point theorem, we also investigate the existence and the continuous dependence on parameters of the unique positive periodic solution.
dc.identifier.urihttp://dspace.univ-skikda.dz:4000/handle/123456789/5497
dc.language.isoen
dc.publisherFaculty of Sciences
dc.titlePositive Periodic Solutions for an Iterative Model of Erythropoiesis in Animals
dc.title.alternativeApplied Functional Analysis
dc.typeMémoire de Master
Files
Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
M-515-00465-1.pdf
Size:
1.85 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed to upon submission
Description:
Collections