On The Maximum Number Of Limit Cycles Of Generalized Polynomial Liénard Differential Systems Via Averaging Theory*

dc.contributor.authorBoulfoul , Amel
dc.contributor.authorMellahi , Nawal
dc.date.accessioned2025-11-11T09:26:46Z
dc.date.available2025-11-11T09:26:46Z
dc.date.issued2020
dc.description.abstractIn this paper, we apply the averaging theory of rst and second order for studying the limit cycles of generalized polynomial Liénard systems of the form x = y - l(x)y, y = -x - f(x) - g(x)y - h(x)y2 - p(x)y3 , where l(x) = ϵl1(x) + ϵ2l2(x) , f(x) = f1(x) + ϵ2f2(x) , g(x) = ϵg1(x) + ϵ2g2(x) ,h(x) = ϵh1(x) + 2h2(x) and p(x) = ϵp1(x) + ϵ2p2(x)where lᴷ(x) has degree m , fᴷ(x) , gᴷ(x),hᴷ(x) and pᴷ(x) have degree n for each k = 1, 2, and ϵ is a small parameter.
dc.identifier.urihttp://dspace.univ-skikda.dz:4000/handle/123456789/5363
dc.language.isoen
dc.publisherApplied Mathematics E-Notes, 20(2020), 167-187
dc.titleOn The Maximum Number Of Limit Cycles Of Generalized Polynomial Liénard Differential Systems Via Averaging Theory*
dc.typeArticle
Files
Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Amel Boulfoul.pdf
Size:
273.51 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed to upon submission
Description:
Collections