Intégration numérique par formules de quadrature: optimisation de l’estimation d’erreur vialaconvexité
dc.contributor.author | MEDJRABG ,Ghada | |
dc.contributor.author | LAKHDARI , Abdelghani | |
dc.date.accessioned | 2024-04-25T10:34:40Z | |
dc.date.available | 2024-04-25T10:34:40Z | |
dc.date.issued | 2023 | |
dc.description.abstract | Ce mémoire propose une étude approfondie d’une certaine formule de quadrature de Gauss connue sous le nom de 2-points Left Radau, permettant de déterminer des estima- tions d’erreurs à la fois dans le cadre classique ainsi que le cadre fractionnaire. Pour cela, nous introduisons deux nouvelles identités clés qui servent de base pour établir des estima- tions précises pour les fonctions dont la dérivée première en valeur absolue est s-convexe. En utilisant ces identités, nous développons des inégalités spécifiques qui permettent de quantifier l’erreur d’approximation. Enfin, nous présentons quelques applications pratiques pour mettre en évidence l’efficacité de nos résultats. | |
dc.identifier.uri | http://dspace.univ-skikda.dz:4000/handle/123456789/1413 | |
dc.language.iso | fr | |
dc.publisher | Faculté des Sciences | |
dc.title | Intégration numérique par formules de quadrature: optimisation de l’estimation d’erreur vialaconvexité | |
dc.type | Analyse Numérique Des Equations Aux Dérivées Partielles , Mémoire de Master |