Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of DSpace
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Slimani, Ali"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Theoretical and numerical study of stochastic Keller-Segel problem
    (University 20 august 1955-Skikda, 2023) Slimani, Ali; Khemis, Rabah
    In this thesis, we use a system of nonlinear PDEs, or the conventional d-dimensional parabolicparabolic equation, to explain the Keller-Segel chemotaxis model. These PDEs include a convectiondiffusion equation for the cell density and a reaction-diffusion equation for the chemoattractant concentration. The Keller-Segel chemotaxis model explains how the density of a cell population and the concentration of an attractant change over time. This thesis uses a variety of approaches and strategies to investigate the parabolic Keller-Segel equations. In the first, we talk about the biological and mathematical modeling of the phenomenon of chemical entrapment, and we create a non-linear fractional stochastic Keller-Segel model, where we demonstrate the existence and uniqueness and regularity properties of the mild solution to the investigated time- and space-fractional problem and the required results under specific presumptions. We also studied a stochastic chemotaxis Keller-Segel model perturbed with a Gaussian process, where we proved the local and global existence of solutions in time for a nonlinear stochastic Keller-Segel model with zero Dirichlet boundary conditions, and we also studied the phenomenon of the Keller-Segel model coupled with Boussinesq equations. The primary goals of this work are to investigate the global existence and uniqueness of a weak solution of the problem using the Galerkin method. Finally, we studied the numerical solution of one-dimensional Keller-Segel equations via the new homotopy perturbation method.

DSpace software copyright © 2002-2025 LYRASIS

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback