Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of DSpace
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Mellahi , Nawal"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    On The Maximum Number Of Limit Cycles Of Generalized Polynomial Liénard Differential Systems Via Averaging Theory*
    (Applied Mathematics E-Notes, 20(2020), 167-187, 2020) Boulfoul , Amel; Mellahi , Nawal
    In this paper, we apply the averaging theory of rst and second order for studying the limit cycles of generalized polynomial Liénard systems of the form x = y - l(x)y, y = -x - f(x) - g(x)y - h(x)y2 - p(x)y3 , where l(x) = ϵl1(x) + ϵ2l2(x) , f(x) = f1(x) + ϵ2f2(x) , g(x) = ϵg1(x) + ϵ2g2(x) ,h(x) = ϵh1(x) + 2h2(x) and p(x) = ϵp1(x) + ϵ2p2(x)where lᴷ(x) has degree m , fᴷ(x) , gᴷ(x),hᴷ(x) and pᴷ(x) have degree n for each k = 1, 2, and ϵ is a small parameter.

DSpace software copyright © 2002-2025 LYRASIS

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback