Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of DSpace
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "LEMOUCHI , Ala Rahma"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    A Transformer-based ensemble frame work for Early diagnosis of genetic syndromes using facial feature analysis
    (Faculty of Sciences, 2025) BELHACINI , Amila; LEMOUCHI , Ala Rahma; HAZMOUNE , Samira
    This thesis ,titled "A Transformer-Based Ensemble Frame work for Early Diagnosis of Genetic syndromes Using Facial Feature Analysis", presents an advanced deep learning approach for early detection of pediatric genetic syndromes using facial images. The motivation stems from the need to assist clinicians with faster and more accurate diagnosis , as facial traits often contain key indicators of genetic abnormalities .To address the limitations of traditional convolutional models, this work integrates Transformer architectures capable of capturing global dependencies and fine-grained facial patterns that are essential for distinguishing between syndromic and non-syndromic faces. The proposed system employs three state-of-the-artTransformer-models- based-Vi-sion Transformer (ViT),Data-efficient Image Transformer(DeiT),and Swin Transformer (Swin-T) —which are combined through ensemble learning using Random Forest,XG-Boost , and Logistic Regression meta-classifiers. This hybrid strategy enhances generalization and robustness across diverse facial representations. Experimental results on a custom-built dataset demonstrate a significant improvement in accuracy, achieving 86%, validating the effectiveness of the ensemble Transformer framework for automated pediatric syndrome diagnosis.

DSpace software copyright © 2002-2026 LYRASIS

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback