Browsing by Author "Karek , Chafia"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Homogenization of the Hyperbolic-Parabolic equations in Domains with small holes(Faculty of Sciences, 2023) Kheroufi , Fahima; Karek , ChafiaIn this memory we study a class of hyperbolic-parabolic problems in perforated domains with a homogeneous Newmann condition on the boundary of the holes. We focus on the homogenezation of these equations by the periodic unfolding method in perforated domains.Item Homogenization of the Parabolic Problem in perforated domains with small holes(Faculty of Sciences, 2024) Oudina , Meriem; Karek , ChafiaIn this memory we study a class of parabolic problems in periodically perforated domains with a homogeneous Newmann condition on the boundary of the holes. We focus on the homogenezation of these equations. The proof is based on th periodic unfolding method in perforated domains.Item Homogenization of the Stokes problem in porous medium by unfolding operator method(Faculty of Science, 2022) Boussekine , Chaima; Latreche , Nour; Karek , ChafiaNous considrons dans ce mémoire le système de Stockes avec des conditions aux bords non homogéne dpendent de γ sur le bord des troux T, et des conditions homogénes (condition de type Dirchlet) au bord de Ω. Notre objectif est d'étudier le comportement asymptotique de la vitesse d'écoulement et de la pression du fluide quand " tend vers zero par la méthode de l'éclatement périodique dans un domaine perforé . Nous obtenons plusieurs cas différents selon les valeurs de γ.Item Homogenzation of the Hyperbolic Problem in perforated domains with small holes(Faculty of Sciences, 2024) Messikh ,Asma; Karek , ChafiaIn this memory we study a class of hyperbolic problems in periodically perforated domains with a homogeneous Newmann condition on the boundary of the holes. We focus on the homogenezation of these equations. The proof is based on th periodic unfolding method in perforated domains.